
Using Analogical Reasoning to Promote Creativity in Software Reuse

Paulo Gomes, Francisco C. Pereira, Carlos Bento and José Luís Ferreira

Centro de Informática e Sistemas da Universidade de Coimbra
Departamento de Engenharia Informática, Polo II, Universidade de Coimbra

{pgomes,camara,bento}@dei.uc.pt

Abstract

Complexity in software design is increasing rapidly, forcing
development teams to be more efficient and more ingenious
in their solutions. One of the fields that has been evolving is
Software Reuse, which consists on using previous
development knowledge in new projects. Due to the
cognitive complexity, reusing software is a difficult task,
especially when one spends more time in understanding and
modifying old software, than building it from the scratch.
This makes a great opportunity for tools that can help
reusing software, and designing applications. In this paper,
we propose analogical reasoning as part of such a tool.
Analogical reasoning can produce innovative designs, or
suggest new ideas to the designer, thus promoting creative
solutions in the reuse of software.

Introduction *

Software is becoming more complex and more prone to
errors. A balance between software quality and
functionalities provided by the software system (which are
directly proportional to its complexity) is a constant
concern of the software designers. This makes a great
stress in the development process, rushing software
companies in the creation of methodologies. Despite all the
software methodologies developed in the last decades,
software design is still more an art than an engineering
field. Like architects, software designers frequently use
their experience from the development of previous systems
to design new ones. Most of the mature engineering fields
make the reuse of components a rule of development, but
in software engineering the reuse of components and/or
ideas is not easy, given the conceptual complexity that
software possesses. Thus, intelligent tools need to be at the
disposal of software designers, in order to help them
creating new systems using parts from previous ones, a
matter that justified the investment on a dedicated research
area: Software Reuse.
 The main goal of software reuse is to shorten the
development time of a software project improving its

Copyright © 2001, Paulo Gomes, Francisco C. Pereira, Carlos Bento,
and José Luís Ferreira.

quality at the same time. This goal is very important to a
software house, which has to produce complex software
within a short time, and with profits. Software
development has different levels of abstraction, each level
dealing with several types of knowledge. To each of these
levels corresponds a reuse level, ranging from code reuse
(the most common form of software reuse), to project
requirements reuse, passing by software design reuse. In
the work presented in this paper we address the reuse of
design knowledge.
 Most of the tools and systems developed to reuse
software (Basset 1987; Prieto-Diaz 1991; Katalagarianos
and Vassiliou 1995; Fernández-Chamizo, González-Calero
et al. 1996) only provide help in retrieving software
entities, like classes, functions or specifications, from
repositories. But reusing software involves also adaptation
of the retrieved knowledge to the system being developed,
which is usually left to the designer, since this is a more
complex and demanding task. Analogical reasoning
(Gentner 1983; Hall 1989; Holyoak and Thagard 1989)
appeared as a technique that can be used to overcome some
of the problems of the adaptation phase of software reuse,
since it involves the transfer of ideas and solutions from
other domains to the target domain. This not only provides
a way to find solutions, but it also gives the opportunity to
built new solutions and sometimes creative ones. Not only
because they are novel and unexpected, but also because
they can be better, simpler and more elegant. We believe
analogical reasoning can achieve this on its own or with
the collaboration of the software designer, providing the
designer with ideas and alternatives that help to explore the
solution space in a more efficient way.
 We are developing a CASE (Computer Aided Software
Engineering) tool, ReBuilder, which uses analogical
reasoning to reuse software. Our goals are: to deploy this
tool in a software development company that is our project
partner; to help the development of software; and to
motivate the production of creative solutions in the
designers helped by ReBuilder. In our approach we
represent software designs in UML (Rumbaugh, Jacobson
et al. 1998) (Unified Modeling Language), a graphical
language used to describe and document object oriented
software designs, that is a standard for most of the software
development companies.
 In the next section, we present some issues related to
Creative Design. Then, we show how analogy can help

software design reuse. Then we present our approach to
analogical reasoning in software reuse using UML. We
also describe an example of a simple problem. Finally, we
draw some conclusions and present ongoing and future
work on our system.

Creative Design

Design is the process of generating a structural description
that complies with a set of functional specifications and
constraints (Tong and Sriram 1992). Constraints can be
structural, behavioral or resource limitations. The design
product is a set of components and relations between them,
making the design structure. The design process involves
three main types of knowledge about the domain:
functional, behavioral and structural. The mapping
between these three types of knowledge is central to the
design process (see Figure 1, (Reich 1991)).

Funct ional
Space

Behav iora l
Space

Structural
Space

Figure 1 - The design process as a mapping process between
functional, behavioral and structural spaces.

 Design is classified as routine and non-routine (Tong
and Sriram 1992; Gero and Maher 1993; Gero 1994b).
Routine design is defined as a class of design where all the
needed knowledge for the mapping process is available to
the designer. Thus routine generated designs are instances
of known class of designs. In non-routine design some
knowledge for the mapping process is missing. When this
lack of knowledge is located in the structural space, it
originates a subclass of non-routine design known as
innovative design. If there is knowledge missing in all the
spaces it is called creative design. Innovative design
creates new designs using values for the design variables,
not commonly used in previous designs. The designs
generated in creative design define new classes of artifacts,
thus expanding the space of known designs.
 In solving design problems, designers use old solutions.
While in routine design old solutions are used to solve new
situations with almost no change, non-routine design uses
old designs in novel ways expanding the space of design
solutions. We defend that Case-Based Reasoning (CBR) is
a suitable framework for creative design, since it is a
paradigm that uses old solutions to solve new problems
(Kolodner 1993).
 Kolodner and Wills (Kolodner and Wills 1993) claim
that indexing cases accordingly to various perspectives is
also important for case-based creative design. Kolodner
and Wills propose the use of exploration processes that can
search the case memory for cases that might be represented
in a different way from the current problem representation.
More recently Simina and Kolodner (Simina and Kolodner
1997) propose a computational model that accounts for

opportunistic behavior, as a characteristic of creative
behavior in case-based design.
 Gero (Gero 1994a) defines five main creative design
processes using design prototypes: combination, mutation,
analogy, first principles and emergence. Combination
involves the composition of two or more prototypes
generating a new one. The mutation process involves a
structural modification of one or more components of the
design prototype. Analogy is defined as a mapping process
between source and target design prototypes. First
principles use knowledge about the design domain through
the use of causal or qualitative models. Emergence is a
process where additional properties of the design are
identified, beyond the intentional ones.
 Sycara & Navinchandra (Sycara and Navinchandra
1991; Sycara and Navinchandra 1993) produced another
important work in this area. They propose a thematic
abstraction hierarchy of influences as a retrieval method
for case-based creative design. In this framework case
organization provides the main mechanism for cross-
contextual reminding which is very important in non-
routine design.
 Bhatta and Goel proposed an analogical theory of
creativity in design (Bhatta and Goel 1997; Bhatta and
Goel 1997). This theory is based on generic teleological
mechanisms, which are behavior-function models. These
models are abstracted from the case-specific structure-
behavior-function models and are used for complex
topological modifications in designs.
 In ReBuilder we focus on the exploration of the space of
old designs. We defend that exploration of space areas
further away from the new problem area increases the
probability of finding creative designs. Analogy can
provide transference of knowledge between the new
problem and areas of the search space far away from the
new problem.

Creative Process and Creative Product

 Creative design can be defined as a cognitive process
that generates new classes of designs. During the design
process the designer explores the space, discovering new
pieces of knowledge enabling the creation of new design
classes. The Creative Process is the process that generates
new designs; its outcome is the Creative Product (see
Figure 2).

Unsolved
Problem

Creat ive
Process

Creat ive
Product

Figure 2 - Creative design path.

A cognitive process resulting into a product is considered
creative if the product satisfies certain properties or
attributes (Dasgupta 1994). These properties determine the
product’s creativity, thus defining guidelines to the

product's examiner. In the remaining of this section we
present some of the main properties that characterize a
creative design from two different perspectives: the
creative process and the creative product.

The Creative Process
Processes for routine design are likely to be different from
those for creative design (Gero and Maher 1993). This
raises an important issue: does creative design involve
intention from the point of view of the designer? This is a
controversial question that the research community has not
answered yet. For instance, can a certain degree of
randomness be regarded as a characteristic of a creative
process? Researchers working on evolutionist systems can
say that it has its role in the process. But can chance be
regarded in the same way? Can a person come up with a
creative solution to a problem, even if there was no
intention to solve the problem?
 We will focus on more tangible aspects of the creative
process having in mind that the processes for creative
design are mainly different from those for routine design.
Though we think that some of the reasoning processes
applied in creative design are used in routine design.
 One consequence of the definition of creative design is
that possible solutions cannot be pre-established, at least
explicitly. Otherwise it would be routine design. But the
frontier between explicit and implicit definition of the
possible solutions is blur. Possible solutions are defined by
the knowledge available. If the space of solutions does not
comprise all the possible solutions it must be incomplete
and/or contradictory. These are two characteristics with
which the creative processes must deal. Creative processes
work with knowledge comprising distinct characteristics
from those found in routine design processes. Creative
processes must also comply with knowledge needed to
perform cross-domain transfer of ideas, which is regarded
as one of the types of reasoning associated to creative
design (Sycara and Navinchandra 1991).
 Design specifications comprise constraints and
functional specifications. Both define the space of possible
problems, thus constraining the space of possible designs.
In creative design these spaces change during the problem-
solving task. Two possible space modifications are
addition and substitution (Gero 1994b). Addition consists
in integrating new design specifications to the problem
space or new designs to the solution space. In substitution,
a region of a design space is substituted by another set of
design specifications or solutions. Replacing design
variables can perform this.
 Reasoning processes modify the search space. During
this modification the reasoning processes generate new
design solutions. The generation of several design
alternatives is important for exploration of the space of
possible solutions and the space of possible problems, thus
assisting the designer understanding the problem nature.
 At this point two important concepts must be clarified,
one is search and the other is exploration. Search is
generally related with routine design and is defined as a

computational process that requires the search space to be
well defined (Gero 1994b). Exploration is a computational
process that modifies the search space and is commonly
associated with creative design. Though search is generally
related to routine design, it can also be used in creative
design. Flexible search mechanisms are needed for creative
reasoning (Gero and Maher 1993). These mechanisms are
responsible for the exploration of the design spaces.
 Some of the main reasoning processes involved in
creative design are: mutation, combination, analogy,
reasoning from first principles and emergence (Gero
1994a). Mutation comprises the modification of a design
structure in order to generate a new one. Another way for
generation of new solutions is the combination of pieces
from different designs. This process can work at different
levels of the design - functional, behavioral or structural
level. Analogy is regarded as one of the more important
processes in creative design. It comprises mapping
between a source design and a target design. It is a suitable
mechanism for transfer of ideas across different domains,
thus implementing cross-domain fertilization. Reasoning
from first principles makes use of domain models in order
to generate new designs. These models are causal or
qualitative and can be viewed as generators from scratch of
new regions in the search spaces. Emergence is a process
in which additional design attributes are identified besides
the intentional ones. This reasoning mechanism concerns
to the ability to view things in new ways, which is a
characteristic of creative reasoning (Partridge and Rowe
1994).

The Creative Product
 There are two types of creativity: personal or
psychological creativity, and historical creativity (Boden
1990; Dasgupta 1994). The former is related to the
individual that evaluates the creative product and the later
is associated with the evaluation by the social community.
Both make use of domain knowledge, which is used to
evaluate the product. While society knowledge comprises a
set of conventional accepted rules or information,
individual knowledge is more experience-based and
specific to the individual.
 The first thing that comes into mind when talking about
creative design is novelty. This is a mandatory
characteristic in a creative solution. The creative product
must be something different from what the evaluator
knows or thinks of. Evaluation of a creative product has to
do with the confrontation of two sets of information. One
is the information contained in the product and the other is
the knowledge that the evaluator possesses or uses in the
evaluation. If the information from the product does not
make part of the evaluator knowledge set, then it can be
said that the product is novel.
 During the evaluation of the presumably creative
product, the evaluator uses performance-measuring
functions, in order to determine to which extent the
product satisfies the problem requirements. These
measuring functions make part of the evaluator’s body of

knowledge. If minimal performance thresholds are met,
then the product is useful and solves the problem. This is
another mandatory characteristic of creative solutions. The
creative product must be appropriate and useful.
 At a historical level, creative solutions must be novel in
which regards to the society knowledge. In this way,
evaluation of creative solutions comprises also a social
aspect. This makes the automatic evaluation of creative
products quite difficult and complex, leading to a two-step
process. The first step is called internal validation and it
consists on checking if the proposed design comprises all
the intended requirements (checking for usefulness). This
phase is also called verification and most times can be
performed automatically. The second step evaluates the
novelty of the design and is normally performed by the
human in a computational system. It comprises the
evaluation of the solution in regard to the information
possessed by the examiner. This phase is called validation.
What if the designer and the evaluator are the same entity?
A benefit in the computational system doing the evaluation
is the automation of the process, thus making it more
efficient. Another advantage is the guidance that the
evaluator can provide during the generation process.
Nevertheless the computer system can hardly have the
same sensibility to the problem as a human evaluator.

Analogy and Software Reuse

Creative processes work with knowledge comprising
distinct characteristics from those found in routine design
and also comply with knowledge needed to perform cross-
domain transfer of ideas, which is regarded as one of the
types of reasoning associated with creative design (Sycara
and Navinchandra 1991). One of the main reasoning
processes involved in creativity is Analogy (Gero 1994a).
It comprises mapping between a source design and a target
design, and it is a suitable mechanism for transfer of ideas
across different domains, thus implementing cross-domain
fertilization.
 Analogical reasoning enables the exploration of new
areas of the solution space, because it maps concepts from
the target domain into a source domain. Since software
reuse can be seen as a transfer of knowledge between a
source project into a target one, analogy is a suitable
mechanism to be used. Suggestions made by the system to
the designer using analogical reasoning can also stimulate
new ideas from the designer. It can also work in
combination with the software designer, providing new
ideas, while the designer evaluates and selects the
suggested solutions.
 The software design level is an appropriate level to work
with because it deals with concepts, enabling the system to
reason in a more abstract plan, one in which it can easily
switch between different domains. But work at other levels
of abstraction has also been developed. Maiden and
Sutcliffe (Maiden and Sutcliffe 1992) proposed the reuse
of software specifications through analogy. Working in a
more abstract level than the software design level. The

system works in requirement analysis, helping the system
engineer to initially elicit the system’s functionalities and
constraints. They built a CASE tool that uses analogical
reasoning to exploit specifications representing a wide
range of applications held in a CASE repository. Cheng
and Jeng (Jeng and Cheng 1993) use a different approach
to analogy in software reuse. They use formal
specifications to represent software components, and
analogical reasoning to reuse the components. Having a
formal specification of a software component makes easier
the determination of its reusability and functionality. This
approach has a major drawback, the software must be
developed using the chosen formalism, which takes time
and trained designers. Harandi and Bansali (Harandi and
Bhansali 1998) describe a methodology for program
derivation using analogy. Their work is at the code level,
which restricts the use of analogical reasoning. They use
their system to derive new Unix operating system
environment programs, using heuristics to find good
source analogues for the target problem. Our approach is
different from the approaches of Maiden and Harandi at
the reuse level, and from Cheng in the formalism used to
represent software designs. The next section describes our
approach and presents an example.

Analogical Reasoning with UML

UML is a graphical language, used to describe software
systems. It comprises several diagrams capable of
describing several aspects of a software system. These
range from requirement analysis using Use Cases, to
structural information using Class Diagrams, passing by
behavioral knowledge specified using State Machines.
ReBuilder uses UML as a representation formalism,
providing the user with a common and worldwide
acceptable software description language. ReBuilder uses
several UML diagrams to specify and design a software
system, usually class diagrams, which can be used for
mapping concepts between different domains. An example
of a class diagram is presented in Figure 3.
 Designing a system’s structure using UML involves two
main steps. First creating the class diagram with the classes
and interfaces needed to implement the system. This phase
is called the conceptual design of the system’s structure
and involves only the main entities of the system
represented as classes. In the second phase the designer
needs to specify the class attributes and methods. This step
requires from the designer a preview of which attributes
and methods are necessary for the system implementation,
which is not always easy. To assist the designer in building
the class diagram we use analogical reasoning.

Person

Department

1

*

1

*
member

Office

**

location

**

Figure 3 - A UML class diagram describing part of a system for
a company management. Only classes are shown, because the
diagram is presented at a conceptual level.

 The analogical engine helps the designer providing
mappings between the partial class diagram of the system
being developed and class diagrams stored in a knowledge
base of previous systems. Thus, it suggests new classes,
attributes or methods to be added to the current class
diagram. The process comprises four steps.
 First, the analogical engine searches and identifies a set
of candidate class diagrams from the knowledge base. To
accomplish this task we use a structure-matching algorithm
similar to SME (Falkeneheimer, Forbus et al. 1986). In
order to guide the search we use an heuristic measure that
ranks classes based on the class degree of importance
taking into consideration the relations that the class
possesses with other UML objects. Using this importance
measure we can identify which classes should be used as
probes in the search algorithm.
 The second step comprises the ranking of the alternative
mappings found by the structure-mapping algorithm. In
this task we use the degree of matching between the
current class diagram and the alternative diagram.
 The third step is the presentation of the ranked
alternatives to the designer so he/she can evaluate and
select the most suitable one. In ReBuilder all the
modifications to the current system design have to be
approved by the designer.
 The last phase consists in completing the current class
diagram using the selected mapping. In this step new
class, attributes and methods can be added to the class
diagram.
 Figure 5 shows a short example of the application of
analogical reasoning. The UML class diagram presented in
Figure 3 is used as the target for the analogical engine. The
class diagram of Figure 4, was chosen from the UML case
repository and is used to complete the target design, the
resulting diagram is presented in Figure 5. As can be seen,
the target diagram has now two additional classes:
Company the analogous of School and Client the
analogous of Student. Just to illustrate the idea, the
Department class has gained some attributes, methods and
relations, which came from its counterpart in the source
diagram.

Student

name : String
StudentID : int

School

name : String
address : String
phone : String

addDepartment()
remov eDepartment()
getDepartment()

Teacher

name : String

SchoolDep

name : String

addTeacher()
removeTeacher()
getTeacher()
addStudent()
removeStudent()
getStudent()

1

*

*1

1

*

has

*1

attends
1

*

assignedTo
1

*

Figure 4 - The source UML class diagram used to complete the
class diagram of figure 1.

Person

name : String

Office

Company

name : String
address : String
phone : int

addDepartment()
remov eDepartment()
getDepartment()

Department

name : String

addClient()
remov eClient()
getClient()
addPerson()
remov ePerson()
getPerson()

1

*

1

*
member

** ** location* 1

Cl ient

name : String
clientID : int

1
*

has* 1

byes
1

*

Figure 5 - The result of analogical reasoning between diagrams
of figure 1 and 2.

Conclusion and Future Work

We think that presenting several alternatives to the
designer helps the construction and completion of the
current class diagram by exploration of the solution space.
These alternatives can be found with analogical reasoning
applied to the UML formalism. One of the main
advantages of analogical reasoning is its capability to
explore different domains, and to create new ideas from
this exploration. Despite this major benefit, analogical
reasoning has some limitations, such as the complexity and
expensive computational work involved in the process, and
also the creation of bizarre designs. Some of these
problems can be solved using search-guiding heuristics, so
that the search done by the analogical reasoning can be
oriented to productive areas of the solution space.
 At this stage we are finishing the implementation of the
Knowledge Base and the basic retrieval mechanisms. So,
the analogical reasoning module has not been implemented
yet, but it is the next step in the process. We are also
planning to explore in more detail the use of analogical
reasoning in software reuse, especially at the specification
level, which corresponds in UML to the Use Cases. Future

work on ReBuilder will also involve the use of Design
Patterns as Case-Based Reasoning adaptation plans for
software designs.

Acknowledgements

This work was partially supported by POSI - Programa
Operacional Sociedade de Informação of Portuguese
Fundação para a Ciência e Tecnologia and European
Union FEDER, under contract POSI/33399/SRI/2000, by
program PRAXIS XXI, and by Fundação Calouste
Gulbenkian.

References

Basset, P. G. (1987). “Frame-Based Software
Engineering.” IEEE Software(July): 9-16.

Bhatta, S. and A. Goel (1997). An Analogical Theory of
Creativity in Design. International Conference on Case-
Based Reasoning (ICCBR 97), Providence - Rhode Island,
USA, Springer-Verlag.

Bhatta, S. and A. Goel (1997). Design Patterns; A
Computational Theory of Analogical Design. International
Joint Conference on Artificial Intelligence (IJCAI'97).

Boden, M. (1990). The Creative Mind: Myths and
Mechanisms. London, Weidenfeld and Nicolson.

Dasgupta, S. (1994). Creativity, Invention and the
Computational Metaphor: Prolegomenon to a Case Study.
Artificial Intelligence and Creativity. T. Dartnall, Kluwer
Academic Publishers.

Falkeneheimer, B., K. D. Forbus, et al. (1986). The
structure mapping engine. Sixth National Conference on
Artificial Intelligence, Philadelphia, PA.

Fernández-Chamizo, C., P. González-Calero, et al. (1996).
Supporting Object Reuse through Case-Based Reasoning.
Third European Workshop on Case-Based Reasoning
(EWCBR'96), Lausanne, Suisse, Springer-Verlag.

Gentner, D. (1983). “Structure Mapping: A Theoretical
Framework for Analogy.” Cognitive Science 7(2): 155-
170.

Gero, J. (1994). Computational Models of Creative Design
Processes. Artificial Intelligence and Creativity. T.
Dartnall, Kluwer Academic Publishers.

Gero, J. (1994). Introduction: Creativity and Design.
Artificial Intelligence and Creativity. T. Dartnall, Kluwer
Academic Publishers.

Gero, J. and M. L. Maher (1993). Modelling Creativity and
Knowledge-Based Creative Design. Sydney, Lawrence
Erlbaum Associates.

Hall, R. P. (1989). “Computational approaches to
analogical reasoning; A comparative analysis.” Artificial
Intelligence 39(1): 39-120.

Harandi, M. and S. Bhansali (1998). Program Derivation
Using Analogy. Eleventh International Joint Conference on
Artificial Intelligence, Detroit, Michigan, USA, Morgan
Kaufmann Publishers, San Mateo, California.

Holyoak, K. J. and P. Thagard (1989). “Analogical
Mapping by Constraint Satisfaction.” Conitive Science 13:
295-355.

Jeng, J.-J. and B. Cheng (1993). Using Analogy and
Formal Methods for Software Reuse. IEEE 5th
International Conference on Tools with AI.

Katalagarianos, P. and Y. Vassiliou (1995). “On the reuse
of software: a case-based approach employing a
repository.” Automated Software Engineering 2: 55-86.

Kolodner, J. (1993). Case-Based Reasoning, Morgan
Kaufman.

Kolodner, J. and L. Wills (1993). Case-Based Creative
Design. AAAI Spring Symposium on AI+Creativity,
Stanford, CA, USA.

Maiden, N. and A. Sutcliffe (1992). “Exploiting Reusable
Specifications Through Analogy.” Communications of the
ACM 35(4): 55-64.

Partridge, D. and J. Rowe (1994). Computers and
Creativity, Intellect Books.

Prieto-Diaz, R. (1991). “Implementing Faceted
Classification for Software Reuse.” Communications of the
ACM(May).

Reich, Y. (1991). “Design Knowledge Acquisition: Task
Analysis and a Partial Implementation.” Knowledge
Acquisition: An International Journal of Knowledge
Acquisition for Knowledge-Based Systems 3(3): 234-254.

Rumbaugh, J., I. Jacobson, et al. (1998). The Unified
Modeling Language Reference Manual. Reading, MA,
Addison-Wesley.

Simina, M. and J. Kolodner (1997). Creative Design:
Reasoning and Understanding. International Conference
on Case-Based Reasoning (ICCBR 97), Providence -
Rhode Island, USA, Springer-Verlag.

Sycara, K. and D. Navinchandra (1991). Influences: A
Thematic Abstraction for Creative Use of Multiple Cases.
First European Workshop on Case-Based Reasoning.

Sycara, K. and D. Navinchandra (1993). Case
Representation and Indexing for Innovative Design Reuse.
Workshop of the 13th International Joint Conference on
Artificial Intelligence, France.

Tong, C. and D. Sriram (1992). Artificial Intelligence in
Engineering Design, Academic Press.

